Depolarization selectively increases the expression of the Kv3.1 potassium channel in developing inferior colliculus neurons.

نویسندگان

  • S Q Liu
  • L K Kaczmarek
چکیده

The Kv3.1 channel subunit, when expressed heterologously, gives rise to a high-threshold noninactivating potassium current. Experiments with auditory neurons have suggested that the presence of this channel subunit enables them to fire action potentials at high frequencies. We have found that the expression levels of Kv3.1 transcripts increase in inferior colliculus neurons before the onset of hearing and then remain relatively constant. Because spontaneous neuronal activity plays an important role in modulating neuronal excitability during development, we examined the effects of depolarization with an elevated concentration of external potassium ions on the expression of Kv3.1 channel subunits in immature inferior colliculus neurons. Elevated potassium produced a marked increase in Kv3.1 mRNA levels and in the amplitude of a high-threshold, noninactivating current before the onset of hearing. This increase was prevented by the presence of a calcium channel blocker, indicating that calcium influx mediated the depolarization-induced increase in this current. In contrast, treatment with an elevated external potassium concentration caused only a moderate increase in the peak amplitude of a lower-threshold inactivating current. The repolarization of action potentials in the high-potassium-treated cells was more rapid and complete than in the control cells. Computer simulations confirmed that this change could be explained by a change in Kv3.1-like current of the same magnitude as recorded in voltage-clamp experiments. Thus, depolarization and calcium influx may alter the excitability of immature inferior colliculus neurons by selectively increasing the levels of a Kv3. 1-like potassium current.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The expression of two splice variants of the Kv3.1 potassium channel gene is regulated by different signaling pathways.

The Kv3.1 potassium channel gene gives rise to two different channel proteins, Kv3.1a and Kv3.1b, by alternative splicing of nuclear RNA. During development the levels of Kv3.1b mRNA (but not Kv3.1a) substantially increase in rat cerebellum after postnatal day 8. The molecular mechanism underlying the differential regulation of the two transcripts is not known. Using in vitro slices of cerebell...

متن کامل

Modulation of the kv3.1b potassium channel isoform adjusts the fidelity of the firing pattern of auditory neurons.

Neurons of the medial nucleus of the trapezoid body, which transmit auditory information that is used to compute the location of sounds in space, are capable of firing at high frequencies with great temporal precision. We found that elimination of the Kv3.1 gene in mice results in the loss of a high-threshold component of potassium current and failure of the neurons to follow high-frequency sti...

متن کامل

Differential expression of K4-AP currents and Kv3.1 potassium channel transcripts in cortical neurons that develop distinct firing phenotypes.

Maturation of electrical excitability during early postnatal development is critical to formation of functional neural circuitry in the mammalian neocortex. Little is known, however, about the changes in gene expression underlying the development of firing properties that characterize different classes of cortical neurons. Here we describe the development of cortical neurons with two distinct f...

متن کامل

Physiological modulators of Kv3.1 channels adjust firing patterns of auditory brain stem neurons.

Many rapidly firing neurons, including those in the medial nucleus of the trapezoid body (MNTB) in the auditory brain stem, express "high threshold" voltage-gated Kv3.1 potassium channels that activate only at positive potentials and are required for stimuli to generate rapid trains of actions potentials. We now describe the actions of two imidazolidinedione derivatives, AUT1 and AUT2, which mo...

متن کامل

Activity-dependent regulation of the potassium channel subunits Kv1.1 and Kv3.1.

Afferent activity, especially in young animals, can have profound influences on postsynaptic neuronal structure, function and metabolic processes. Most studies evaluating activity regulation of cellular components have examined the expression of ubiquitous cellular proteins as opposed to molecules that are specialized in the neurons of interest. Here we consider the regulation of two proteins (...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 18 21  شماره 

صفحات  -

تاریخ انتشار 1998